Do antioxidants inhibit oxidative-stress-induced autophagy of tenofibroblasts?

نویسندگان

  • Ra-Jeong Kim
  • Young-Sool Hah
  • Chang-Meen Sung
  • Jae-Ran Kang
  • Hyung Bin Park
چکیده

Recent research on tendinopathy has focused on its relationship to programmed cell death. Increased autophagy has been observed in ruptured rotator cuff tendon tissues, suggesting a causal relationship. We investigated whether autophagy occurs in human rotator cuff tenofibroblast death induced by oxidative stress and whether antioxidants protect against autophagic cell death. We used H2 O2 (0.75 mM) as oxidative stressor, cyanidin (100 µg/ml) as antioxidant, zVAD (20 µM) as apoptosis inhibitor, and 3-MA (10 mM) as autophagy inhibitor. We evaluated cell viability and known autophagic markers: LC3-II expression, GFP-LC3 puncta formation, autolysosomes, and Atg5-12 and Beclin 1 expression. H2 O2 exposure increased the rates of cell death, LC3-II expression, GFP-LC3 puncta formation, and autolysosomes. After we induced apoptosis arrest using zVAD, H2 O2 exposure still induced cell death, LC3-II expression, and GFP-LC3 puncta formation. H2 O2 exposure also increased Atg5-12 and Beclin 1 expressions, indicating autophagic cell death. However, cyanidin treatment reduced H2 O2 -induced cell death, LC3-II expression, GFP-LC3 puncta formation, and autolysosomes. Cyanidin and 3-MA similarly reduced the cell-death rate, and Atg5-12 and Beclin 1 expression. This study demonstrated that H2 O2 , an oxidative stressor, induces autophagic cell death in rotator cuff tenofibroblasts, and that cyanidin, a natural antioxidant, inhibits autophagic cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease

Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS to...

متن کامل

Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death

Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic ...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

The Effect of Kaempferol on Autophagy and Nrf-2 Signaling in a Rat Model of Aβ1-42-induced Alzheimer’s Disease

Background: Numerous pieces of evidence support that oxidative stress is a key factor in the pathogenesis of neurodegenerative diseases, like Alzheimer’s Disease (AD). Suppression of oxidative stress is an attractive strategy and flavonoids as potent natural antioxidants are extremely noticeable.  Objectives: In this study, the effects of Kaempferol (KMP) were evaluated on passive avoidance me...

متن کامل

Cell Survival Effects of Autophagy Regulation on Umbilical Cord-Derived Mesenchymal Stem Cells Following Exposure to Oxidative Stress

Background: Due to oxidative stress, hypoxia, and serum deprivation, a large percentage of mesenchymal stem cells (MSCs) die in the early stages of transplantation. The present study aimed to address whether induction or inhibition of autophagy would affect the viability of MSCs after exposure to oxidative stress.Methods: MSCs were isolated from umbilical cord tissue using the Ficoll grad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2014